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Immortalized human lymphoblastoid cell lines have been used

to demonstrate that it is possible to use an in vitro model system to

identify genetic factors that affect responses to xenobiotics. To

extend the application of such studies to investigative toxicology

by assessing interindividual and population-wide variability and

heritability of chemical-induced toxicity phenotypes, we have

used cell lines from the Centre d’Etude du Polymorphisme

Humain (CEPH) trios assembled by the HapMap Consortium.

Our goal is to aid in the development of predictive in vitro
genetics-anchored models of chemical-induced toxicity. Cell lines

from the CEPH trios were exposed to three concentrations of 14

environmental chemicals. We assessed ATP production and

caspase-3/7 activity 24 h after treatment. Replicate analyses were

used to evaluate experimental variability and classify responses.

We show that variability of response across the cell lines exists for

some, but not all, chemicals, with perfluorooctanoic acid (PFOA)

and phenobarbital eliciting the greatest degree of interindividual

variability. Although the data for the chemicals used here do not

show evidence for broad-sense heritability of toxicity response

phenotypes, substantial cell line variation was found, and

candidate genetic factors contributing to the variability in

response to PFOA were investigated using genome-wide associa-

tion analysis. The approach of screening chemicals for toxicity in

a genetically defined yet diverse in vitro human cell-based system

is potentially useful for identification of chemicals that may pose

a highest risk, the extent of within-species variability in the

population, and genetic loci of interest that potentially contribute

to chemical susceptibility.
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Environmental and public health agencies are faced with the

overwhelming task of assessing the human risk from tens of

thousands of chemicals that are released in the environment

each year (Judson et al., 2009). Traditional approaches to

toxicity characterization rely on extensive animal testing, cost

millions of dollars, can take many years per chemical, and have

significant uncertainty factors. Because of the time consuming

and costly nature of in vivo testing, data currently exist for only

a small fraction of the chemicals of potential concern (Judson

et al., 2009). The National Research Council report (NRC,

2007) argues for a transition from in vivo models to in vitro/

in silico methods in order to capitalize on the advances in

technology and computational biology to more efficiently and

effectively predict human health risk and reduce the time and

cost of testing. Governmental agencies in the United States

have responded by initiating large-scale high-throughput

screening programs, devising methods to coordinate data, and

considering modified approaches to risk assessment (Collins

et al., 2008).

To address the pressures for more efficient risk assessment

and prioritization strategies, there is a need for in vitro toxicity

testing in population-based models (NRC, 2008). Although

genetic information can play a key role in understanding and

quantifying human susceptibility, an essential step in many of

the risk assessments used to shape policy (Cullen et al., 2008),

traditional toxicity testing paradigms do not address this critical

need. Toxicity data derived from studies on lower organisms

(such as yeast), only a single cell line, or rodent strain cannot

be used to understand how constitutional genetic variation

between individuals in a human population may affect toxicity

(Rusyn et al., 2010). In the absence of an understanding of

population genetic variation, default uncertainty factors, rather

than scientific data, drive risk assessment decisions on most

chemicals. Better population-based, genetically defined models

are needed to fill these data gaps and to develop more

meaningful uncertainty factors.

Recent studies using immortalized human lymphoblastoid

cell lines (LCLs) from the International HapMap Consortium

show promise in filling this gap with meaningful data. This

in vitro population-based model has been used successfully to

evaluate interindividual and gender-specific differences in

responses to drugs (Dolan et al., 2004; Watters et al., 2004)

and to identify genes in the transcriptional response to

radiation, including genes involved in cell cycle control,

DNA repair, and cell death (Jen and Cheung, 2003). HapMap

cell lines of Northern and Western European ancestry (CEU)

are arranged in family trios, have been densely genotyped
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(Frazer et al., 2007), and provide large, renewable sample sets

for a wide range of studies (Meucci et al., 2005). Although

HapMap cell lines have important limitations (Choy et al.,
2008), we hypothesized that a population-based human in vitro
model may be used for assessment of interindividual and

population-wide variability in chemical-induced toxicity phe-

notypes and provide information for the biological interpreta-

tion of the variability.

The Centre d’Etude du Polymorphisme Humain (CEPH)

panel of LCL trios was treated with 14 model environmental

toxicants, and two widely used markers (Huang et al., 2008;

Xia et al., 2008) of cell death/viability (ATP production and

caspase-3/7 activity) were used to assess toxicity. We show that

this in vitro genetics-anchored human model system can be

used to demonstrate (1) the utility of a population-based

approach to screening for chemical toxicity and (2) the

potential to identify the genetic susceptibility factors that can

be used as candidates in genotype-phenotype studies.

MATERIALS AND METHODS

Chemicals. A set of 14 chemicals includes model chemicals representing

a wide range of classes of toxicants. Chemicals were obtained from the U.S.

Environmental Protection Agency National Center for Computational Toxicology

and dissolved in dimethyl sulfoxide (DMSO) to a stock concentration of 20mM,

aliquoted to a 96-well plate, and stored at �20�C. Chemical concentrations for

in vitro experiments were chosen from the reports in the literature. Dilutions

(1003) were prepared using dimethyl sulfoxide according to the necessary

final concentration, and a 96-well working plate was kept at room temperature

for no longer than 10 days. The 96-well treatment plates were prepared by

aliquoting 1 ll each of 14 chemicals at three concentrations (with a replicate of

each concentration) using Biomek 3000 (Beckman Coulter, Fullerton, CA)

robot. Wells containing vehicle alone (1% final concentration), cells in vehicle,

and a positive control (tetraoctyl ammonium bromide) were also included.

Final chemical concentrations and plate design are shown in Supplementary

figure 1.

Cell lines and culture conditions. A panel of 87 immortalized human

lymphoblast cell lines from the CEPH trios assembled by the HapMap

Consortium was purchased from Coriell Cell Repository (Camden, NJ). Each

of the CEU trios consists of a family of two parents and one child. Cell lines

were cultured as a suspension in RPMI 1640 media (Gibco, Carlsbad, CA)

supplemented with 15% Fetal Bovine Serum (HyClone, South Logan, UT) and

1% Pen-Strep (Gibco) as recommended by Coriell and maintained at 37�C and

5% CO2. Cell density and viability were assessed prior to treatment using

Cellometer Auto T4 Plus (Nexcelcom Bioscience, Lawrence, MA). Cells were

grown to a concentration of 106 cells per milliliter, volume of at least 12 ml,

and viability of at least 85% before treatment. Cells (100 ll containing 104

cells) were aliquoted to each well in a 96-well treatment plate (following

addition of the chemicals, see above) and mixed using the Biomek 3000 robot.

Plates were incubated for 24 h after treatment at 37�C and 0.5% CO2.

Cell viability and caspase-3/7 assays. Following a 24-h incubation period,

Cell-Titer-Glo Luminescent Cell Viability and Caspase-Glo 3/7 (Promega

Corporation, Madison, WI) assays were used according to manufacturer’s

protocol. These assays assess ATP production, a marker of cell viability, and

caspase-3/7 activity, a measure of apoptosis. Luminescence was measured and

recorded using DTX880 (Beckman Coulter) plate reader. Replicate wells at

each dose were averaged, and raw values were normalized relative to the

baseline (cells in vehicle) and background (vehicle only) at each dose. These

normalized percentage of control values were used in all subsequent analyses.

A subset of replicate cell viability (18 cell lines) and caspase-3/7 (31 cell lines)

experiments were performed independently to evaluate experimental variabil-

ity. Raw data are publicly available from PubChem (AID: 1976).

Receiver operating characteristic curve analysis and response

classification. Values from the replicate experiments were used to determine

experimental variability of chemical-elicited responses for each assay.

Although the data are inherently quantitative, it is useful to develop thresholds

for classification of individual cell lines as ‘‘responders’’ and ‘‘nonresponders.’’

The interplate replicated values (‘‘first run’’ and ‘‘second run’’) provide a useful

comparison to establish thresholds to maximize reproducibility. Briefly, for

each of the 14 chemicals, a threshold was applied to the quantitative response

for the second run and used to provisionally classify individuals as responders/

nonresponders. By comparing these provisional dichotomized values to the

original quantitative response values for the first run, a receiver operating

characteristic (ROC) curve analysis can be used as a measure of correspon-

dence. Here the dichotomized response values serve the role of ‘‘true negative/

positive’’ classification in the ROC calculation, although it should be

recognized that our purpose is different than for typical ROC analysis. Each

threshold resulted in a different ROC curve and an accompanying area

underneath the curve. By examining various possible thresholds, we found the

assay response value that gave the largest area underneath the ROC curve,

and this value was used as the response/nonresponse threshold applied to the

plate- and replicate-averaged response (see Supplementary table 1).

Estimation and testing of heritability. Heritability estimates for parent-

child trios follow from a standard quantitative trait model: y ¼ b0 þ b1 (am þ
ap) þ e for normalized ATP or caspase-3/7 phenotypes y as an average across

plate and replicate measurements (see, e.g., similar expressions in Roy-Gagnon

et al., 2008), where am and ap represent the separate maternal and paternal

allelic contributions across all contributing loci, i.e., the polygenic effects. The

normal error terms e were assumed to be independent across individuals. We

did not include an extra family-specific environmental term, reasoning that the

above model would potentially slightly overestimate heritability, and any

apparently significant results would be subject to additional scrutiny and

modeling. A straightforward variance component approach implemented in R

(v. 2.10.1) fits each family separately as multivariate normal, with fixed effect

mean b0, overall variance r2
g þ r2

’ (the genetic and error variances),

covariances 0 between the unrelated parents, and covariances
�
1=2

�
r2
g

between parents and children. A likelihood ratio (LR) statistic with 1 degree of

freedom was formed for the term r2
g, equivalent to testing

h2 ¼ r2
g=
�
r2
g þ r2

’

�
>0. The positive constraint on the variance term implies

that 2log(LR) is approximately distributed as a mixture of 0 and v21, and

this approximation was used to obtain p values. The suitability of this

approximation for a sample size of 30 trios was confirmed via additional

simulations (data not shown).

Modeling of cell line, plate, and replicate effects. The availability of

multiple plate measurements on a subset of individuals enabled dissection of

the variance components because of each of the cell line, plate, and replicate

effects for each chemical and each of the normalized ATP and caspase

measurements. For the ATP assay, 16 cell lines and 34 plates were used for this

modeling, with 2 plate replications for 14 cell lines and 3 plate replications for

2 cell lines. For the caspase-3/7 assay, 20 cell lines and 50 plates were used

for this modeling, with 2 plate replications for 13 cell lines, 3 plate replications

for 4 cell lines, and 4 plate replications for 3 cell lines. Using the terminology

‘‘north’’ and ‘‘south’’ to represent the upper and lower positions of replicates on

the same plate (Supplementary fig. 1), we used the lme4 function in R v. 2.10.1

to fit the hierarchical model yijk ¼ b0 þ b1I
�
i ¼ 2

�
þ b

ð3Þ
k þ b

ð2Þ
jk þ ’ijk; where

’ijk~N
�
0;r2

1

�
; b

ð2Þ
jk ~N

�
0;r2

2

�
; and b

ð3Þ
k ~N

�
0;r2

3

�
, for the ith replicate within

plate (i ¼ 2 corresponding to south), the jth plate, and the kth cell line. Here

b0 is a fixed intercept term, and b1 is a fixed position effect, to account for

possible systematic position bias. The terms r2
1; r

2
2; r

2
3correspond to variance

contributions from (replicate) error, plate, and cell line, respectively. Although
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the b1 term was significant for many chemicals, removal of the term did not

appreciably affect the variance components (not shown). The models did

not use family relationship information, as the heritability values were not

significant, and the inclusion of the relationship information (which largely

affects correlation structure in the error terms) would not appreciably change

the estimates.

For the genome-wide scans, a single phenotype measurement was used by

averaging across the plates and north/south replicates. The modeling approach

described above can then be used to estimate the proportion of variability due to

cell line for each assay and chemical. We have the new model for the kth cell

line yk ¼ b0 þ b0k þ ’k , where yk is the average assay value across north/south

replicates and available plates and b0k is a random intercept with variance

estimable from the previous variance component modeling. We have

var
�
b0k

�
¼ r2

3, regardless of plate replication, and for cell lines with r plate

replicates (r ¼ 1, 2, 3, or 4), we have var
�
yk
��r� ¼ r2

3 þ r2
2=r þ r2

1=
�
2r
�
. The

proportion of variation due to cell line for the averaged phenotype is, finally,

var(b0k)/var(yk), where the denominator is averaged over the number of

replications.

Genome-wide association study. Genotypes for the cell lines were

obtained from phase II genotypes of the International HapMap Project (Frazer

et al., 2007). Quantitative transmission disequilibrium testing was applied to

evaluate the association between genetic markers and chemical-elicited ATP

production and caspase-3/7 activation response phenotypes using PLINK

(Purcell et al., 2007). For this analysis, quantile normalization was used on the

assay response values to reduce the influence of extreme observations. The

University of California-San Cruz Genome Browser (http://genome.ucsc.edu/

index.html) (Kent et al., 2002) NCBI Build 36.1 was utilized for examination

of genomic loci of interest. To investigate networks related to genes of interest,

we used Ingenuity Pathway Analysis Software (http://www.ingenuity.com;

Ingenuity Systems, Mountain View, CA).

RESULTS

Interindividual Variability

We successfully screened 85 cell lines for cell viability and

83 cell lines for caspase-3/7 activity endpoints. These assays

were selected based on their utility for in vitro screening of

cytotoxicity in cell type- (Xia et al., 2008) and individual-

independent manner (Choy et al., 2008). A combination of the

two assays compensates for the limitations of the individual

assays and therefore can provide sensitive and reliable

estimation of cytotoxicity (Shi et al., 2010).

Using ‘‘on the plate’’ duplicates and a subset of independent

replicate experiments (containing duplicate wells for each

chemical/concentration), we determined the extent of experi-

mental variability. The thresholds established using this

analysis (see Materials and Methods section and Supplemen-

tary table 1) were used to classify responder/nonresponder

cell lines for each chemical and assay. Among the chemicals

screened in this study, there was a range of interindividual

variability in cytotoxicity across the population of cell

lines. Even though three concentrations were tested for

each chemical in all cell lines and assays, only the highest

concentrations elicited robust responses (data not shown),

and further analyses were performed on top concentrations.

For cell viability assay, the intraplate correlations between

responses to 14 chemicals (rPearson ¼ 0.80 ± 0.17, rSpearman ¼

0.68 ± 0.22) were generally higher than interplate correlations

(rPearson ¼ 0.65 ± 0.28, rSpearman ¼ 0.55 ± 0.23). For caspase-3/7

assay, the intraplate correlations (rPearson ¼ 0.89 ± 0.17,

rSpearman ¼ 0.64 ± 0.14) were as high as or even lower than

those in interplate comparisons (rPearson ¼ 0.88 ± 0.13,

rSpearman ¼ 0.73 ± 0.16).

Interindividual (i.e., between cell lines) variability in

responses was observed for some, but not all, chemicals in

the panel of 14. For each chemical/assay, we used random-

effect modeling to determine the portions of the variability due

to cell line, plate replicates, and within-plate replicates (see

Materials and Methods section and Supplementary tables 2A

and 2B). The results indicate substantial portions of variability

because of cell line for some chemicals, keeping in mind that

the initial modeling reflected portions of variability for each

measurement, not considering the impact of averaging across

replicates. When the impact of replicate averaging is

considered (Supplementary tables 2A and 2B), the proportion

of variation because of cell line is even higher, ranging from 15

to 40% for several assay/chemical combinations. The averaged

phenotype values are reflective of the individual ‘‘phenotype’’

value used for later association analysis, and such fractions of

explained variability compare quite favorably to the cumulative

effect size distributions for modern genome-wide association

study data sets (Park et al., 2010), although additional

heritability investigation is warranted. Basal values for each

of the assays tended to be correlated with the response values at

the highest dose; thus, the analysis using normalized values

was key to eliminate potentially spurious correlation because of

the baseline differences between cell lines.

Representative examples of trends in responses that were

seen across the population of cell lines are shown in Figure 1.

The cell viability (ATP production) response (Fig. 1A) was

most variable for perfluorooctanoic acid (PFOA) (100lM) and

phenobarbital (3mM), and there is correlation between the two

on the individual cell line level. At the same time, the loss of

cell viability induced by rifampin (100lM) was very consistent

across the panel. Induction of apoptosis (activation of caspase-

3/7) phenotype (Fig. 1B) was most variable with phenobarbital;

however, PFOA and propiconazole (100lM) did exhibit some

but not as wide a range of responses.

Population-Wide Variability

Next, we assessed the ranges of variability in the popula-

tion that were exhibited by the chemicals tested. Varying

degrees of population-wide variability were exhibited in both

phenotypes in response to the panel of 14 chemicals (Figs. 2A

and 2B). Most of the chemicals tested showed rather narrow

ranges of variability and little overall effect, except for PFOA

and phenobarbital. The number of responder cell lines (see

Materials and Methods section for a description of the

classification) is shown in Figures 2C and 2D. Rifampin,

myclobutanil (100lM), and propiconazole caused a robust

decrease in ATP production (loss of cell viability) in half or
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more of the cell lines even though there was little population-

wide variability. Polychlorinated biphenyl-118, PFOA, and

phenobarbital had an opposite effect on the ATP production

phenotype. It has been reported previously that some

cytotoxic treatments may lead to a transient increase in the

intracellular ATP, an effect attributed to enhancement in

energy production when cells are undergoing self-repair in

response to toxic challenge shortly after exposure (Shi et al.,
2010). Propiconazole, and phenobarbital also caused the most

increases in activation of caspase-3/7, even though the

fraction of responder cell lines was much smaller, only 10–

20%. Interestingly, whereas rifampin exhibited a uniform

effect of loss of ATP production in this panel of cell lines and

thus produced the highest number of responders, chemicals

that showed great variability in responses (e.g., PFOA,

phenobarbital, and propiconazole) also elicited a number of

robust responses in both assays. It should be noted that

cytotoxicity was observed in at least one individual in

response to most of the chemicals (except for mono-ethyl-

hexyl phthalate, PFOA, and perfluorooctanesulfonic acid for

the ATP assay, and di-ethyl-hexyl phthalate and diethyl ether

for the caspase-3/7 assay), further arguing for the utility of

screening in a genetically diverse panel of cells whereby both

the population-wide and the individual’s responses can be

evaluated.

Comparison of Chemical-Elicited Responses

Similarities and/or differences in response to chemicals

in two assays probing divergent modes of cell death in

a population may provide additional clues for mode of action

analysis. We compared compound effects both within and

between assays by calculating correlations between compounds

with respect to their population-wide effects. A heat map

(Fig. 3) of Spearman correlation coefficients (see sidebar scale

for reference) shows that strong concordance of responses

across a population exists for some chemicals known to have

similar modes of action (or a parent-metabolite pair) within

each assay. However, some closely related chemicals, such as

PFOA and perfluorooctanesulfonic acid, did not elicit highly

similar responses within either assay. In addition (as is also

shown on Fig. 1), responses to PFOA and phenobarbital were

highly correlated in the ATP production assay, but not in the

caspase-3/7 assay. Correlation of compound’s activity between

the two assays was also calculated; yet, no significant

correlations between chemical-elicited responses in ATP

production and caspase-3/7 activity were found (data not

shown).

In addition to evaluating similarities in responses across

chemicals, we assessed similarities among cell lines in the

population. Correlations between responses to the 14 com-

pounds in these cell lines were evaluated and unsupervised

clustering performed (average linkage hierarchical clustering

using the correlation metric) using the data from ATP

production (Fig. 4A) and caspase-3/7 activation (Fig. 4B)

assays. Similar to the observations in Figure 3, chemicals of the

same class showed similar responses and clustered together.

Across the individual cell lines, subclusters of response are

apparent; however, no familial clustering of cell lines was

evident for responses to this panel of chemicals.

As a more formal approach to assess the impact of familial

relationships, we performed variance components heritability

testing in the trios for each chemical/assay (see Materials and

Methods section and Supplementary table 3). None of these

results was significant, an observation which is consistent with

informal examination of mid-parent assay values compared

with those of the offspring (data not shown).

Phenotype-Genotype Association Mapping

The cell-based model system used in this study is not only

genetically diverse but is also genetically defined, with dense

genotyping information (several million single nucleotide

polymorphisms [SNPs]) publicly available (Frazer et al.,
2007). Thus, it is possible to examine associations between

the chemical-induced phenotypes (ATP production and

caspase-3/7 activity) and the genetic markers, investigating

potential genetic contributions to the observed variability in

responses. Although phenotype-genotype relationships were

assessed using genome-wide association scans (see Materials

and Methods section ) on all chemical/assay combinations,

we report here a detailed analysis of the effect of PFOA

FIG. 1. Interindividual variability in response to toxicants in a panel of

human lymphoblast cell lines. Production of ATP (A) and activation of

caspase-3/7 (B) were assessed 24 h after treatment with phenobarbital

(s, 3000lM), PFOA (h, 100mM), rifampin (:, 100lM), or propiconazole

(e, 100lM). Percent change over the baseline (vehicle, 1% DMSO) in each

cell line is shown. Cell lines are ordered (in each panel separately) according to

the response to phenobarbital. Cell lines were considered responders (filled

symbols) if percent change was exceeding the significance threshold (see

Materials and Methods section ).
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in ATP production (cell viability) assay. PFOA elicited the

widest range of interindividual variability in this phenotype,

with close to 35% of cell lines classified as responders,

across the population of cells. Both pharmacokinetics and

toxicity of PFOA are known to be highly variable in many

species, as evidenced, e.g., by studies with controlled

exposures in nonhuman primates (Butenhoff et al., 2002). In

addition, PFOA was estimated to exhibit approximately 20%

variation due to cell line for the averaged response (Supple-

mentary table 2), although as described earlier there was no

significant evidence of heritability. In such circumstances, the

power to detect significant associations is likely to be limited,

but a genome scan for these samples can nonetheless be

performed as the genotypes of these cell lines are publicly

available, potentially identifying candidate regions for follow-

up analyses.

The genome-wide plot in Figure 5A shows ~2.2 million

SNPs and their strengths of association with PFOA-elicited

ATP production phenotype. Using a genome-wide threshold of

p < 10�6 as suggestive evidence identifies loci on chromo-

somes 4 (Fig. 5B) and 14 (Fig. 5C). Within the 500-kb loci

flanking SNPs with highest association, there are several

potential candidate genes for susceptibility to PFOA. On

chromosome 4, FAT tumor suppressor homolog 1 (FAT1) is

a human gene whose homolog in the rat has been shown to

be responsive to PFOA treatment (in the liver) (Guruge et al.,

2006). On chromosome 14, three genes were located in

the candidate quantitative trait locus (QTL): solute carrier

family 24 (sodium/potassium/calcium exchanger), member 4

(SLC24A4); cleavage and polyadenylation specific factor 2

(CPSF2); and Ras and Rab interactor 3 (RIN3). SLC24A4 is

a sodium ion carrier, and numerous genes from the solute ion

carrier family have been identified as responsive to PFOA

treatment in rat liver, rat kidney, and mouse liver (Guruge

et al., 2006; Kudo et al., 2002; Rosen et al., 2007). Although

CPSF2 and RIN3 have not been shown in previous studies to

be responsive to treatment with PFOA, they are tightly linked

through a gene network to genes that have been observed as

responsive to PFOA treatment in other species. Networks for

CPSF2 (Fig. 5D) and RIN3 (Fig. 5E) show the interactions

with immunoglobulin heavy constant mu and RAB5A/B,

member of RAS oncogene family (RAB5A and RAB5B),

respectively, which are responsive to PFOA in rat and chicken

liver (Guruge et al., 2006; Yeung et al., 2007).

DISCUSSION

Although the utility and relevance of the cell-based models

with regard to species, metabolism capacity, concentration

selection, and other important factors are still under intense

debate (Coecke et al., 2006; Hartung and Daston, 2009),

FIG. 2. Population-wide variability in response to 14 model toxicants. Production of ATP (A and C) and activation of caspase-3/7 (B and D) in a panel of

human lymphoblast cells were assessed 24 h after treatment with the highest dose (see Supplementary fig. 1) of each compound. Box and whiskers plots (A and B)

were used to exhibit the variability in responses across the population. Bar graphs (C and D) demonstrate the number of cell lines with a significant response above

(light bars) or below (dark bars) the vehicle control.
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high-throughput in vitro screening methods are destined to

become the major means for addressing numerous gaps in

chemical toxicity data (Andersen and Krewski, 2009). One

important dimension that is yet to be comprehensively

considered in chemical testing is the role of the genetic

variability that plays a major role in differential susceptibility to

chemicals. Indeed, an in vitro model system that is genetically

defined, representative of a diverse population, and amenable to

high-throughput screening could significantly aid in chemical

prioritization, identification of susceptibility factors, population-

wide uncertainty analysis, and predictive toxicity testing.

The human population-based in vitro resource provided by

the HapMap Consortium allows generation of phenotype data

in a cell-based model system, which contains genetic in-

formation representative of a diverse human population

(Meucci et al., 2005). The toxicity data obtained in this model

system can potentially be combined with high-density

genotype information to enable the discovery of genetic causes

of susceptibility and variability in response (Watters et al.,
2004). Combining genotype and phenotype information for

both molecular profiles and complex traits is a promising

strategy for understanding which genes, pathways, and

biological processes are also under the influence of a given

QTL (Harrill and Rusyn, 2008). Additional advantages of

using HapMap LCLs are ease of experimental manipulation

and ability to control the experimental environment, allowing

the genetic contributions toward a specific chemical-induced

phenotype to be tested (Huang et al., 2007).

Some (Choy et al., 2008) have argued that nongenetic

factors for the LCL cell lines could offer alternative

explanations for cell line variability, hampering efforts to

elucidate genetic variation. Although we have taken steps to

minimize alternate sources of variation, the question will

remain open until clear genetic susceptibility variants have

been identified. The establishment of apparent cell line

variation indicates the need for caution in interpreting

a potential population-wide risk for a chemical, both because

of the potential for underlying genetic susceptibility as well as

the possibility that genomic assays performed by other

researchers on much more limited sample sets have also been

subject to such variation. Nonetheless, we point out clear

differences in the scientific goals of toxicogenetic testing

approaches compared with that of other genetic subdisciplines

(e.g., pharmacogenomics). In toxicology, merely establishing

FIG. 3. Within-assay correlation map of compound activity across the population. Correlations between compounds with respect to their population-wide

effects in the ATP production (bottom left) or caspase-3/7 activation (upper right) assays are shown as a heat map using Spearman correlation coefficient values

(see sidebar scale for reference). Only DE 71 and Rifampin (Caspase 3/7 activation) showed negative correlation.
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ranges of variability is important, both because such ranges

may reflect true underlying genetic variability but also because

they may reflect other sources of variability, the extent of

which may have gone unrecognized.

The freshly isolated lymphocytes (generally described as

peripheral blood mononucleated cells) are widely used as

a surrogate tissue for toxicity studies and as a source of DNA

for genotyping. Numerous reports in the literature have

examined the metabolic capacity of the total lymphocyte

preparations, as well as fractions of T and B lymphocytes

(Sempoux et al., 1999; Siest et al., 2008; Vanden Heuvel et al.,
1993), and their capacity for induction of the metabolism genes

by xenobiotics (Krovat et al., 2000). Whereas lymphocytes do

not have the metabolic capacity of the liver, or even that of

freshly isolated hepatocytes, they do express a number of

nuclear receptors, as well as most genes of the phase I and II

metabolism, and transporters (Siest et al., 2008). Thus, even

though the metabolism-dependent toxicity may not be detected

in cultured lymphocytes and lymphoblasts, this model system

is comparable to many other transformed cells; yet, it offers

a critical advantage of the defined genetic variability.

This study shows that data produced by testing a set of

chemicals in a genetically defined yet diverse human

population-based in vitro system can be useful in many ways.

The examination of interindividual variability shows that for

some chemicals, such as phenobarbital and PFOA, there is an

appreciable interindividual variability in response across the

population, whereas for others, such as rifampin, toxicity

response is uniform across the population. This suggests that

there is utility of using this population-based in vitro system for

FIG. 4. Correlation of responses between chemicals and individuals. Heat maps were generated by clustering (average linkage on the correlation metric) the

data on percent ATP production and percent caspase activation at highest dose across all chemicals and individuals. The heat maps are ordered both vertically and

horizontally with the most correlated participants and chemicals being displayed near to one another. Data were mean centered and transformed as indicated in the

corresponding histograms.
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both prioritization of chemicals for more in-depth screening

(for those exhibiting great variability across the population)

and understanding the potential genetic causes of individual

susceptibility. In addition, these data represent a measure of

the degree of variability in toxicity-relevant phenotypes,

information which may be useful in defining the extent of

a population-wide uncertainty for risk assessment.

Identifying chemicals with the widest variability in response

in a genetically diverse population signifies the need to further

examine the mechanisms behind interindividual responses.

First, the comparisons of the adverse effects for a panel of

chemicals and across a population can generate hypotheses

concerning modes of action that may explain the similarities

and/or differences within the population and between chem-

icals. For example, responses to PFOA and phenobarbital were

highly correlated in the ATP production assay, but not in the

caspase-3/7 assay, indicating similarities in their modes of

action with regard to the effect on general cell metabolism and

cell proliferation, but not on the activation of apoptosis.

Second, the lack of significant correlations between chemical-

elicited responses in ATP production and caspase-3/7 activity

may indicate that none of the chemicals that we tested reduces

cell viability through the apoptotic pathway at the concen-

trations used. Third, comparing responses to chemicals across

the population is another important assessment that provides

information on population-wide effects. Lack of familial

clustering may indicate that ATP production and caspase-3/7

activation responses to chemicals in this panel of cells are not

heritable, but because of the complexity of the traits that we

observed and the small number of chemicals, concentrations,

and time points tested, further studies may be needed.

In addition, this study identified several potential candidate

susceptibility genes for PFOA-induced adverse effects. The

genes in the susceptibility loci can be linked either directly or

indirectly to the known effects of PFOA in other tissues and

species (Guruge et al., 2006; Kudo et al., 2002; Rosen et al.,
2007). Existence of previous reports from the in vivo model

systems provides biological plausibility to the discovered

associations and serves as an illustrative example supporting

the potential of using high-throughput phenotype and genotype

data from an in vitro human population-based resource to

discover genetic loci that may be relevant to observable trends

in phenotypes across the population. In addition, the candidate

regions can be further elucidated using existing expression

QTL (eQTL) data under the hypothesis that regional SNP

variants may act on susceptibility via expression-based

regulation. Whereas a search of the eQTL browser (eqtl.

uchicago.edu) found no cis-eQTL associations in the FAT1
region with the requisite evidence for display (cis-eQTL

evidence with p < 10�3), two SNPs (rs12586368 and

rs7159431) in intron 1 of SLC24A4 were reported as having

evidence of cis-eQTL action on transcript CCDC88 and one

SNP (rs17783660) in the exon 2 of RIN3 was reported as

having evidence of cis-eQTL action on BTBD7. All the SNPs

and transcripts are in the same 11q32 region based on the

RNA-seq data (Montgomery et al., 2010). Although the tissue

sources for examination of eQTL evidence are currently

limited, larger and richer eQTL data sets will soon be available,

with organ-specific evidence of genetic regulation of transcrip-

tion. Further studies are needed to firmly address the potential

biological role of these genes in PFOA-induced adverse effects

FIG. 5. Genome-wide association scan of ATP production response to

PFOA. (A) Genome-wide plot of SNPs and their degree of association with

PFOA-elicited ATP production phenotype. Arrows indicate the loci with

highest association. (B and C) Loci (500 kb) on chromosomes 4 and 14

flanking SNPs that are highly associated (p < 0.000001) with PFOA-elicited

phenotype. Genes located in these loci are shown as well as gene networks for

CPSF2 (D) and RIN3 (E). Shaded symbols (IGHM, RAB5A and RAB5B)

indicate genes that have been identified as responsive to PFOA treatment in rat

and chicken liver (Guruge et al., 2006; Yeung et al., 2007).
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and to test these and other candidates in human or animal

studies to verify their mechanistic relevance to interindividual

susceptibility.

It is important to consider that in vitro systems have many

limitations. Culture conditions of many cell-based in vitro
systems do not mimic physiological conditions, are not

homeostatic, and are often oxygen deprived. Cell densities

are often lower than tissue densities, impairing normal

intracellular signaling, and multiple cell types usually are not

represented, limiting cell-cell interactions. Many in vitro cell-

based systems are of cancer origin, which is problematic

because it is known that cancerous cells have thousands of

mutations and even chromosomal aberrations which can affect

phenotypes (Hartung and Daston, 2009), and these limitations

make prediction of human toxicity based on in vitro toxicity

results very challenging. The HapMap cell lines used in this

study are not devoid of many of these limitations. In addition,

the CEPH panel consists of cell lines derived from a human

population that have been immortalized via Epstein-Barr

virus transformation to induce long-term growth (Tosato and

Cohen, 2007). A concern was expressed that Epstein-Barr virus

copy number as well as cellular growth rate and ATP levels

play a confounding role in studies using these cell lines to

detect genetic contributions to phenotypic traits (Choy et al.,
2008).

Although the HapMap cell lines have important limitations,

we were able use these cell lines to generate data that can be

used for hazard identification in a population context. Our

study was limited in size and throughput but serves as an

important proof of concept that may be scaled to larger

samples. In addition, high-throughput studies should be done to

explore a wider range of chemicals and time points to

fully explore the ability of this system to provide a measure

of population-based dose-response for risk assessment

purposes. Nevertheless, our work does demonstrate that

a genetically defined, diverse in vitro model system can be

used to generate data that are useful for exploring population-

wide interindividual variability in response, chemical mode of

action characteristics, and genetic contributions to observed

phenotypes.

CONCLUSIONS

This study aimed to investigate the utility of using

a genetically defined yet diverse human in vitro model system

to screen for adverse effects of environmental chemicals.

A population of cell lines was exposed to a panel of model

toxicants, and cell viability and caspase activation were

assessed. The interpretation of the data from in vitro screening

in the population-based cell culture models, rather than

collections of unrelated cell lines from multiple species and

tissues, is affording several advantages. First, our results show

that some, but not all, chemicals elicit interindividual variation

in response to treatment. Chemicals that vary in their effects

across the population may need to be prioritized for further

testing using additional in vitro or in vivo approaches. Second,

this screening method provides a population-wide measure of

uncertainty, information which may be crucial for the future

risk assessment approaches that will rely heavily on in vitro
data (Andersen and Krewski, 2009). Third, such data may be

used to explore potential differences/similarities in modes of

action between chemicals on the population-wide level. Lastly,

by combining the toxicity data and publicly available genetic

information, it is possible to probe the contribution of genetics

to adverse phenotypes and select the candidate genes and

regulatory networks for further studies to verify their

mechanistic relevance with regard to differences in suscepti-

bility to chemical treatment.
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